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Adaptive Mesh Grouping in Electrical Impedance Tomography 
for Bubble Visualization 

Kyungho Cho* and Sin Kim* 
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The bubble visualization in two-phase flow using the E l i  (Electrical Impedance Tomogra- 

phy) technique requires an image reconstruction process. When the conventional iterative image 
reconstruction algorithms are used, the processing time increases rapidly and the convergence 
characteristics become very poor as the spatial resolution increases. In order to overcome this 

problem, this study proposes an adaptive mesh grouping method utilizing the genetic algorithm 

and the fuzzy set theory. Computer simulations using the improved Newton-Raphson method 
combined with the proposed method show promising results that mesh grouping may become 

a useful way to mitigate the ill-conditioning phenomenon which makes the EIT inverse problem 
difficult. 
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1. Introduct ion 

it is very important to understand precisely the 
two-phase flow phenomena in the thermal 
hydraulic systems. Various two-phase flow 

measuring techniques have been suggested and 
devised. Based upon their principles, they can be 
classified into radioactive absorption and scatter- 
ing (Shollenberger, 1997), impedance (or 
capacitance) (Dickin, 1996; Elkow, 1996; Ovacik, 

1997a and 1997b), optical (Vassallo, 1993), 
acoustic (Xu, 1997) technique and so on. Also 
these can be divided into invasive and non-inva- 
sive techniques according to whether flow fields 

are disturbed or not by the measuring equip- 
ments. Conductivity or optical probes are the 
typical intrusive ones. Conversely, as a non-intru- 
sive technique, radiological equipments are 

adopted. Recently, many efforts are given to the 
development of optical techniques such as LDV 

(Laser Doppler Velocimetry) and PIV (Particle 
Image Velocimetry) methods. However, there still 
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remain open issues on these techniques that (i) 
the probes inserted into flow fields not only 

disturb the flow inevitably but also take the infor- 
mation only at the neighboring regions around 
the probes and (ii) the radiological or optical 
methods give rather spatially averaged informa- 
tions over the measured flow fields. 

Recently, there are several researches (Cho, 
1997; Dickin, 1996; Elkow, 1996; Ovacik, 1997a 

and 1997b) that applied the EIT (Electrical 
Impedance Tomography) technology (Webster, 
1990; Woo, 1990) to the multi-phase flow to 
investigate the flow mechanism more precisely. 
The results, however, show that there still remain 
several problems to be resolved for the EIT tech- 

nology to be a useful tool to measure the bubble 
distribution (Cho, 1997; Ovacik, 1997a and 
1997b). The major difficulties come from the 
image reconstruction process. In the bubble visu- 

alization via the EIT, the resistivity dislribution 
at a certain instance is reconstructed as an image 

for the bubble distribution at the measuring sec- 

tion. The image reconstruction in the EIT is 
characterized as a difficult inverse problem due to 
its high non-linearity and ill-posedness. 

Using the improved Newton-Raphson method 
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(iNR) and the finite element method as the image 
reconstruction algorithm and the modeling 
method, respectively, il takes unbearable amount 
of computation time on a personal computer to 
reconstruct an image with 5% spatial resolution 

(Woo, 1993). To reduce the computational time, 

several researchers suggested various element or 

mesh grouping methods. In these methods, they 
forced all meshes belonging to a certain group to 

have the same resistivity value (Woo, 1992; 
Glidewell 1995; Paulsen, 1995). If meshes are 
appropriately grouped, the number of variables 
can be reduced without sacrificing the spatial 
resolution. This helps not only to reduce the 

computation time but also to improve the sensitiv- 

ity problem, because the size of the grouped 
meshes becomes bigger than the size of a single 

mesh. In the above grouping methods suggested 
so far, however, meshes are grouped rather in pre 
-determined ways. So, they are very limited to 
some specific applications (e. g. for medical imag- 

ing) and not suitable to the bubble visualization 
via the EIT technology. 

In two-phase flow fields, we may assume that 
there are only two different representative resis- 
tivity wdues; one resistivity value for the back- 
ground (e. g. water) and the other for the target 
(e. g. bubbles). Thus, meshes belonging to a 

certain phase may have the same resistivity value. 
Based on this observation, this study proposes an 
adaptive mesh grouping method where the mesh 
grouping changes adaptively during the image 

reconstruction proccss based on a fuzzy-genetic 
algorithm for the bubble visualization in two 
-phase flow ficlds. 

2. Iterative Image Reconstruction 
Method and Ill-Conditioning Problem 

In this paper, we adopted iNR (Webster, 1990; 

Woo, 1993 and 1994) as a basic image reconstruc- 
tion algorithm for the EIT. The iNR algorithm is 

an improved version of the modified Newton 
Raphson method developed in the University of 

Wisconsin-Madison. Given a FEM model for the 
flow domain with a possible bubble distribution 
as shown in Fig. 1 where each mesh has its own 

Fig. 1 F E M  mesh model and bubbles. 

unknown resistivity value, the iterative image 
reconstruction procedure can be formulated as 
follows. 

Let the unknown resistivity distribution vector 
of thc  FEM model be p =  ~pl,p2,"',DNI r where pi 

( i= I , . . . , N )  is the resistivity value of  the i-th 
element. Let e = [ e,,ez,...,egJ r be the error vector 

between the calculated ( f (p )  = [A (p) & (O) ,..., 
f g  (P) I T) and the measured ( v =  [v ,  v2,-..,vM] r) 

voltages at M boundary nodes. Then, the image 
reconstruction in the EIT becomes a problem of 

finding P that minimizes the objective function 
defined as: 

r  .... v ) .  (1) 

To find p which minimizes r  we set its 
derivative to zero, i. e., 

r  = [ f , ( p ) ] r ( f ( p ) _  v ) = 0  (2) 

where If'(p)3,~---r?~)- ~ called the Jacobian 

matrix. Taking Taylor series expansion of r  
about a point pk and keep the linear terms 

r ( t ? + , ) =  r r  (3) 
pk + ~ = pk + z/Ok. (4)  

The term r is called the Hessian matrix expres- 
sed as 

r  (5 )  

where @ is the Kronecker matrix product and f ,  

f"  and f"  are to be evaluated at p k. We omit the 
second term in the above equation since f "  is 

relatively small value and thus is difficult to be 

calculated accurately. Therefore, Eq. (5) will be 

r  [ f , ]  rf,. (6) 

Substituting Eq. (6) into Eq. (3),  

zJp k :  -- H .1jr(f__ v). (7) 

Here, 
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H = ~b"= [ f ' ]  ~f' and ] = f '  (8) 

where f ,  jr and H are to be evaluated at pL in the 

iterative method, the solution pk is updated by 

Eqs. (4) and (7) until a pre-specified stop condi- 

tion is satisfied. 

Since we do not know a priori  which meshes 

belong to which phase, we start with N unknown 

variables i. e. the total number of the meshes. It is, 

of course, much greater than the actual number of 

the unknown resistivity values (e, g, 2 for two 

-phase flow). Therefore, the matrix size of Hes- 

sian H becomes unnecessarily large. Since it is 

known that the Hessian matrix H is very ill 

-condit ioned for large elements, the computed 

dp  k is also very sensitive to errors in the calcula- 

tion of Jacobian and Hessian matrices including 

the measurement and finite element modeling 

errors. To overcome this i l l -condit ioning prob- 

lem, several methods such as the regularization 

method (Hua, 1988), the singular value decompo- 

sition method (Mural and Kagawa, 1985) and the 

Marqardt  method (Yorkey, 1986) have been 

presented. The maximal distinguishability (Is- 

saacson, 1986) and the optimal current patterns 

(Hua, 1987) are also useful concept to overcome 

the i l l -condi t ioning problem in the image recon- 

struction. 
Even though their partial  fulfillments are great 

in a certain numerical process, none of the afore- 

mentioned methods has succeeded in reconstruct- 

ing the EIT images of practical resolution in a 

reasonable processing time even at the noise-free 

simulations. At the next section, we will introduce 

a new practical method which helps overcome the 

i l l -condit ioning problem in reconstructing the 

EIT image for the two-phase flow visualization 

by reducing the unknowns through an appropri-  

ate mesh grouping method. 

3. Adapt ive  M e s h  Grouping  Based  

on F u z z y - G A  

3.1 Basic idea of adaptive mesh grouping 
One of the major problems in iNR is the rapid 

increase of the amount of computations and the 

poor convergence characteristics as the number of 

unknown variables (or the number of meshes) N 

increases, However, even after a few iterations, an 

absolute valuses can not obtained but some useful 

informations on the target images like the approx- 

imate outlines of the target and so on can be 

obtained. So we may tentatively determine which 

mesh or group of meshes might belong to the 

target (e. g. bubble) or to the background (e. g. 

water). 
Therefore, after a few iterations of  iNR, we stop 

and examine the intermediate results. Then, we 

group all meshes whose resistivity values and 

changes are similar to each other. The exact 

meaning of this similarity will be described later 

in this paper (Sections 3.3 and 3.4). Mesh group- 

ing reduces the number of unknown variables and 

increases the size of the effective mesh, so it helps 

to improve the condition number of the Hessian 

malrix in iNR method to solve the Eq. (1). By 

al ternating iNR iterations and groupings  

repeatedly, we expect to improve the convergence 

characteristics as well as to reduce the image 

reconstruction time. 

3.2 Three mesh groups 
In two-phase flow fields, we may assume that 

there are only two different representative resis- 

tivity values; one resistivity value for the back- 

ground (e. g. water) and the other for the target 

(e. g. bubbles).  Here, the target needs not be a 

single segment. It could be multiple segments of 

same resistivity value. 
After a few initial iNR iterations performed 

without any grouping, we classify each mesh into 

one of three mesh groups: 'BaseGroup'  is the mesh 

group with the resistivity value of the back- 

ground. 'ObjectGroup'  is the mesh group with the 

resistivity value of the object or the target like 

bubbles. 'Adjus tGroup '  is the group of meshes 

neither in BaseGroup nor in ObjectGroup. All 

meshes in BaseGroup and ObjectGroup are 

forced to have the same but unknown resistivity 

values, respectively. However, all meshes in Ad- 

jus tGroup can have different resistivity values. 

Mesh grouping is performed through two 

stages. At the first stage (Section Y3), we roughly 

classify the mesh groups by appling the Genetic 
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Algorithm to the resistivity distribution from the 

iNR iteration just finished. At the second stage 
(Section 3.4), we refine and/or  revise the GA's 

classifications, if necessary, by examining the 
changes of resistivity values of each mesh during 
the previous iNR iterations based upon the fuzzy 

set theory. 

3,3 Mesh grouping by Genetic Algorithm 
After several iNR iterations with or without 

any mesh grouping, we start a new mesh'grouping 
procedure. Firstly, we rearrange the resistivity 

values of meshes by sorting them in ascending 

order. Let s~(j=l ,- . . ,N)  be the resistivity distri- 
bution after this rearrangement. Then, the typical 
shape of s j distribution becomes the curve shown 
in Fig. 2 during the reconstruction process. In 
Fig. 2, it is very natural to assume that meshes in 
regions II and IV belong to BaseGroup (water) 
and ObjectGroup (bubbles), respectively. All 

meshes in regions I ,  $ ,  and V can be classified 

into AdjustGroup. 
However, since we cannot always expect to get 

such a well-distinguished resistivity distribution 
as shown in Fig. 2, it is not trivial to divide it into 

the five regions properly and determine the repre- 

sentative resistivity tbr each region. Let /5~(i---I, 
�9 ..,5) be the representative resistivity value in 
each region and /cj(j-- 1,-..,4) be the boundary 
location between regions. Then, we can formulate 
the following optimization problem to determine 

~,, and kj; 
Find 

X={#-a, iJ2, ():~, p-~, {J~, k,, /c~, k~, /c4) (9) 

to maximize 

1 
fitness (X)  =~j  (10) 

subject to 

5 k~ 

D = ~  ~ ( s t '  t~i) ~, k0 = l ,  k~=N (11) 
i = l  J = k t - t  

where 

X : a candidate solution 
s~(sj<_s,j~, j = I , - . . , N )  ;resistivity value rear- 

ranged in ascending order, 

fi~(i--1,...,5) ;representative resistivity value 
in each region, 

k j ( j=  1,...,4) :boundary  of  regions, and 
N : total number of variables or meshes. 

We solve the problem described in Eqs. (9) 

--(11) using the Genetic Algorithm (GA) 
(Goldberg, 1989) and get a solution which pro- 
vides one way of dividing the regions. Then, Phase 

and fioh~ are the average resistivity values of 
meshes in BaseGroup and ObjectGroup, respec- 
tively. (Yb~s~ and ~-o~j are the standard deviations 

of resistivity values of meshes in BaseGroup and 
ObjectGroup, respectively. 

3.4 Fuzzy  sets of  meshes  for background 
and target 

After we classified all meshes by solving the 
problem defined in Eqs. (9)- - (11) ,  we apply a 
fuzzy classification stage to confirm the validity of 

the GA's mesh classification based on the infor- 
mation about how the resistivity value of a single 
mesh has been changed during the previous iNR 

iterations. We impose two additional require- 
ments on all meshes in BaseGroup and Object- 

Group so that they belong to the corresponding 

I II 

/ 

k o kl 

Fig. 2 

III IV V 

/ 

/ 
J 

k 2 k~ k,~ k 5 

Typical distribution of the sorted resistivity 
values during image reconstruction. 

1l/' 
Fig. 3 

i 

Membership functions of Iz_a,(p) and /-t_B~(d) 

(Pl = fiba~, Pz= fSo~j, O'l = ffo,~, 62= c%,~,.,). 
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groups; Firstly in order for a mesh to belong to 
a mesh group, its average resistivity value during 
the previous iNR iterations must be within some 

small range from either tTbas~ or t~o~. Secondly, 
its standard deviation of resistivity value during 

the same iterations must also be within some 

small range from either ~oase o r  ffob3. 
We now define four fuzzy sets by membership 

functions shown in Fig. 3 as follows: 

A~={(O, ~ , ( ; ) ) I p E R } ,  i=1,2 (12) 
B , = { ( a ,  a~ , (a ) ) la~R} ,  i=1 ,2  (13) 

where, A,. is a fuzzy set of resistivity values that 
can possibly belong to BaseGroup( i= l )  or 
ObjectGroup( i=2)  and Bi is a fuzzy set of stan- 
dard deviations of  resistivity values that can 
possibly belong to BaseGroup( i= l )  or Object- 
Group ( i - -2) .  

Let's define another two fuzzy sets, G;, as fuzzy 
sets of all meshes belonging to  BaseGroup( i=  1) 

and Objec tGroup( i=2) .  Then, we obtain these 
fuzzy sets so as to satisfy the two aforementioned 
requirements: 

( ; ,= A, n Bi = ((j, /~, (j))lJ = 1,2,...,N}, 
i=1,2.  (14) 
Here, the membership functions /z~A,(j) are 

determined as follows: 

ttc_,(j) =min{/za_,(pj), /x_,,(aj)}, j= I ,2 , . . . ,N .  

(15) 

Then, we can obtain the normal sets of meshes, 

G~a,~e and Go,j, for BaseGroup and ObjectGroup 
by applying the aa and a2 cuts of fuzzy sets (~a and 
(;2, respectively (Zimmermann, 1985): 

G ~ =  {jl#_c., (j) >a,}, (16) 

In this work, we found heuristically that the 

results of Eqs. (16) and (17) do not seriously 
depend upon the ce~ and ce2 values ranging 0.8 ~ 1. 

If there is any mesh that had been classified to 

BaseGroup (or ObjectGroup) from the solution 

of Eqs. (9) ~ (1 I) but turned out not to belong to 

Gb~. (or Go~s) by Eqs. (16) and (17), we revise 
their grouping indices to AdjustGroup. 

3.5 Possible grouping errors and their cor- 

rection 

As already noted by other researchers (Issaac 
son, 1986; Hua, /987), the EIT image reconstruc- 
tion process is a highly nonlinear and very ill 

-posed inverse process. So, the grouping method 

proposed above does not always provide correct 
results. In other words, there may exist some mis 

-classifications in the mesh grouping because 

most of  the informations used in the mesh group- 

ing come from the iNR iteration results, some of 
which might have been contaminated seriously 
due to the inherent ill-posedness. It should be 
notified that the iNR iterations seldom converge 
when many meshes are mis-classified. So it is 
required to correct the mis-classification, if neces- 
sary. 

From many  observations of  numerical simula- 

tions, we have found that there are three kinds of 

typical resistivity behavior during the iNR itera- 
tions; 

1) Poor convergence behavior with large oscil- 
lation 

2) Convergence behavior with small oscilla- 
tion 

3) Pseudo-convergence behavior with small 
oscillation 

The major task in the mesh grouping is to 
determine which elements belong to which cate- 

gory among the above three behaviors. Of course, 
there may still remain some elements showing the 
first type behavior during iterations due to the ill 
-posed characteristics even though there is no 

element of the third type pseudo-convergence 
behavior. In case of a rather simple problem 
where there exists no mesh of the third type 
behavior, the proposed mesh grouping method 
works well without any mis-classification. As the 

problem becomes difficult, however, there appear 
some meshes whose resistivities undergo the third 

type of pseudo-convergence behavior. In this 

situation the mesh grouping error (or misclas- 
sification) is likely to occur at these pseudo 

-convergent meshes. Whenever the meshes of the 
third type behavior exist, we observed, there also 
exist concurrently some meshes undergoing the 
first type behavior almost near around the third 
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type ones. The third type behavior usually occurs 
at the meshes of the central area of  the problem 

domain where the sensitivity of the boundary 
voltage to the resistivity of  a mesh is very poor. 

Actually, we have no useful measure to identify 

the third type meshes during the reconstruction 

process, In this work, however, simply and easily 
we can almost avoid or resolve the afore- 
mentioned mis-classification by searching the 

meshes of the first type behavior and by resetting 
the grouping indices to AdjustGroup of these 
meshes including their node-neighboring meshes. 

Here, the node-neighboring ones of a mesh mean 
all the elements which are connected with the 
mesh through ils nodes. 

After the mesh grouping and correction of the 
mis-classification if exists, we prepare a new 
initial guess for the subsequent iNR iterations. 
All the meshes belonging to BaseGroup and 

ObjectGroup are tbrced to have the new initial 

values of P~se and ~obs, respectively. For the 

new initial resistivity values of  the meshes in 
AdjustGroup, we use the average resistivity value 
/~a~ in this group. However, the resistivity values 

for AdjustGroup can change independently in the 

subsequent iNR iterations. 

Figure 4 shows a flow chart for the mesh 
grouping method proposed above. As can be seen 
in Fig. 4, the iNR iteration and the mesh group- 
ing repeats alternatively until we obtain a conver- 
ged image. In terms of the objective function 

defined by Eq. (1), we decide that the reconstruct- 
ed image is almost converged to the true one 
when the objective value r  is less than 10 "r. 

Throughout the repeated grouping processes the 

BaseGroup and ObjectGroup are adaptively chan- 

ged to increase and AdjustGroup size becomes 
smaller and smaller. Therefore, the total number 
of unknown variables decreases from the initial 
value N to the number of meshes in the reduced 
AdjustGroup plus one or two as the reconstruc- 

tion proceeds. It will be shown in Sec. 4.2 that the 

0 Homogeneous Initial Guess p 

J~ 
T 

iNR Iterations, kffiO,1,2... 

r ok)= II (f( P*)-  O)II 

H=r ' j=f"  

A pk = _ H q j r ( f _ v )  
pk,1 k = pk+ h p 

k p 

Adaptive Mesh Grouping 

GA Grouping 

Fuzzy Classification 

Grouping Error Correction 

pk 

EIT Experiment 
measured boundary voltages 

~[ Forward Solver -1 

V 1 k VV=O 
P f( p )-,~-::--T-k~ 1 

Display pk and 
Convergence Chock 

Fig. 4 

[ Hew Initial p ~ ] 

Flow chart for the EIT reconstruction method using the proposed mesh grouping. 
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reduction of the unknown variables means not 

only the reduction of  the computational  time but 

also the improvement of the i l l -condit ioning of  

the system with decreased condition numbers. 

4. Computer Simulations and 
Discussions 

We performed several computer simulations to 

compare the performance of the proposed mesh 

grouping method with iNR-the  wel l -known con- 

ventional method for the future application of the 

bubble visualization. In the computer simula- 

tions, we assumed noise free in voltage measure- 

ment mainly for the easy comparison. We started 

the first iNR iterations without any mesh group- 

ing with an arbitrary homogeneous initial guess 

for the resistivity distribution. 

4.1 Quality of reconstructed image and re- 

construction time 
Figure 5 shows the reconstructed images by the 

conventional iNR method without mesh grouping 

for the sample target objects (e. g. bubbles) 

shown in Fig. 1. Even though the target seems to 

be simple, the iNR failed to reconstruct the target 

image correctly, In Fig. 5, we may roughly esti- 

mate the profile and the location of the target 

after only a few iterations, e. g. five iterations. 

However, further iterations don' t  show much 

improvement. Even after 50 iterations as shown in 

Fig. 5 (f), there still remain considerable amount 

of errors in the reconstructed image. This kind of 

poor convergency is a very typical problem in the 

NR--type reconstruction algorithms in the EIT. In 

Table 1 Summary of the image reconstruction 

shown in Fig. 6 with mesh grouping 

No. of No. of 
No. of No. of 

meshes meshes CPU 
Mesh meshes unknown 

in in time* 
Group in Base variables 

Object Adjust [sec/iter] 
Group in iNR 

Group Group 

0 0 0 152 152 5.19 

1st 66 0 86 87 1.92 

2nd 86 0 66 67 1.29 

3rd 91 19 42 44 0.74 

4th ..... !!0 26 16 18 0.29 

*) ; CPU time per iteration in the iNR on Pentium 

PC (166MHz) 

Fig. 5 Reconstructed images by iNR without mesh grouping for the bubbles in Fig. 1. 
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the meanwhile, we can significantly improve the 

iNR's convergency by adopting the proposed 

mesh grouping method as follows. 

In order to apply the mesh grouping method, 

we stopped the initial iNR process after five 

iterations, lqgure 6 (d) shows the image that is the 

same one in Fig. 5(d),  and Fig. 6(e) shows the 

first Fuzzy-GA classification result using the 

previous iNR iterations results. As shown in 

Table 1, it should be noted that 66 meshes among 

152 ones are grouped to BaseGroup but none to 

ObjectGroup yet. The remains (darker regions in 

Fig, 6 Reconstructed images by iNR with mesh grouping for the bubbles in Fig. 1. 
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Fig. 6 (e)) correspond to AdjustGroup. The num- 
ber of unknowns is reduced to 87 and the itera- 
tion time is saved by 60% approximately at the 
next iNR iterations. Using the mesh grouping in 

Fig. 6(e), we restarted the second set of iNR 
iterations and obtained the image in Fig. 6(f) 

after 10 more iterations in iNR. Then we stoped 

again and applied the second fuzzy.-GA classifica- 
tion to obtain the mesh grouping in Fig. 6(g). In 

Fig 6(i), after the third grouping, it should be 
noted that some meshes are now grouped to 

ObjectGroup and the BaseGroup becomes larger 
than in Fig. 6(g), so the AdjustGroup is reduced. 

Repeating these procedures, we obtain the final 
image in Fig. 6( / ) .  The final image converges to 

the true one with the squared error sum ~b(p) less 
than l0 -7, 

shows the changes of the condition number of the 
Hessian matrix H defined by Eq. (8). As can be 
seen in the figure, when mesh grouping is not 

applied, the iNR could not decrease the condition 
number further up to 50 iterations. On the con- 
trary, the proposed mesh grouping method helps 

the iNR decrease the condition number signifi- 
cantly or mitigate the ill-conditioning phenome- 
non through out the repeated mesh grouping. 
Comparing this figure with Fig, 7, we can find 

that the proposed mesh grouping method helps to 
decrease the condition number of the Hessian 
matrix and improve the convergence characteris- 

tics, which evenlually results in a great reduction 
in the total reconstruction time. 

Table 2 shows several target (e. g. bubble) 

images which may be encountered in the two 
-phase flow fields. All these images were recon- 

4.2 Improvement on ill-posedness 
Figure 7 shows how the values of the objective .... ~ 

function in Eq. (1) have changed during the :::11: : 
image reconstruction shown in Figs. 5 and 6. ~ 1,+,~. 

"~ Ie *14  - Please be notified that the x-~axis scales are differ- ~ .... ~- 
ent from each other in Fig. 7 (a) and (b). Table 

1 shows how the adaptive mesh grouping method :::111" 
has reduced not only the number of unknown ..... 
variables but also the computation time in iNR i.*~ 
iteration. 

Usually, a matrix is called ill-~conditioned Fig. 8 
when its condition number is very large. Figure 8 

- o -  INR ~dthout ~rou~ng 
aping l 

~0 100 150 200 250 
Time(see} 

Condition numbers during the iterations in 
Figs. 5 and 6 

t .ClD-3 

1 , 0 E + 2 ~  

1.0E+1 

I ,(Ta,~ 

1.0~-1 
E 

1,(~.2 

1,0E-3 

1,W,=.4 

o~ 1,0~e5 

1.06.6 

1.0~7 

1,~-.8 

1.0B9 

1.0~.10 I I �9 I , . I ~ . . . .  

5O 100 1 "n 2~o 25O 
Time {sec )  

(a) Without Grouping 

Fig. 7 

1.0[+5 

1,0E,4 

1.0E+3 

1.00-2 

1,0~1 

1,0E40 
E 

1,0E-1 

1.0E-2 

1.0e4 g 

1.(~.6 

1 ,~.7 

1 , ~  

1,~E, t9 

1,0E-IC 

1 
= NR al),e~ 

I . . . . .  J ~ , . . . .  I 

20 4O BO 

(b) With Grouping 

Values of the objective function in Eq. (1) for images shown in Figs. 5 and 6. 

80 
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Table 2 Summary of case studies for various bubbles 

513 

*) For all the cases above, the reconstructed images have converged to the true ones with ~b(p) < IO -7 within 

5~  10 seconds after the intermediate results shown above when the mesh grouping is applied. 

**) Elapsed CPU time on Pentium PC (166MHz) 
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structed easily with the squared error sum ~b(p) 
less than 10 -7 using the proposed mesh grouping 

method. On the contrary, the iNR algorithm 

without mesh grouping has failed to reconstruct 
any of these images correctly. 

5. Conclusions 

The EIT technology, which has been firstly 
proposed for the medical application, seems to 
have several advantages when it is applied to the 
two-phase flow measurements. First of all, it is a 

non-invasive measurement technique and its 
measuring speed is very fast. Even though this 
kind of  potential ability of the EIT, several prob- 

lems must be resolved in advance for its real 

application. One of  the major problems is the 
rapid increase in the image reconstruction time 

with poor convergency as the spatial resolution 
increases. In this work, it is found that the iNR 
method which has been accepted to have a sound 
theoretical background also can not be free from 
this kind of problem. In other words, it is very 
difficult to visualize the bubble images by using 

the conventional EIT reconstruction method like 

the iNR method because the bubble visualization 
via the EIT is a highly nonlinear and ill-posed 
inverse problem. 

We developed an adaptive mesh grouping 
method based on fuzzy-GA algorithm for the two 
-phase flow visualization based upon the EIT 
technique. When combined with iNR, it helps us 
decrease the condition number of the Hessian 

matrix thus get more improved solutions at the 
subsequent iNR iterations. Owing to the better 
conditioning by the repeated mesh groupings, we 
can eventually obtain the converged solution 
within a resonable computation time with the 
personal computer for several noise free computer 

simulation test cases. The quality of the recon- 

structed images is also highly improved compared 
with the conventional iNR results. 

We limited the implementation of the proposed 

mesh grouping algorithm to a system with two 
representative resistivity values. This would be a 
resonable assumption for the two-phase flow 
fields. We are now working on increasing the 

number of groups in order to extend the EIT to 
the multi-phase flow fields. This will require us 
to divide the ObjectGroup into several subgroups 

with multi-level representative resistivity values. 
A study on the stability of the proposed algor- 

ithm in the presence of measurement and model- 

ing errors has not been completed yet. However, 

we think that the stability will also be improved 

due to the better conditioning of the Hessian 
matrix as the mesh grouping increases the effec- 
tive mesh size. 
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